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Abstract

We present an energy model that combines information from the amino acid sequence of a protein and
available NMR chemical shifts for the purposes of identifying low energy conformations and determining
elements of secondary structure. The model (‘‘PECAN’’, Protein Energetic Conformational Analysis from
NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical
energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared
to prior methods for secondary structure determination, PECAN provides increased accuracy and range,
particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues
located at the boundaries between regions of predicted secondary structure that may not fit the stringent
secondary structure class definitions. The energy model offers insights into the local energetic patterns that
underlie conformational preferences. For example, it shows that the information content for defining
secondary structure is localized about a residue and reaches a maximum when two residues on either side
are considered. The current release of the PECAN software determines the well-defined regions of sec-
ondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is
close to the practical limit of achievable accuracy in classifying the states.

Introduction

Protein secondary structure plays an important role
in classifying proteins (Lesk and Rose, 1981) and in
analyzing their functional properties (Przytycka
et al., 1999). A host of methods have been devel-
oped for the prediction of secondary structure from
atomic coordinates (determined from X-ray crys-
tallography or NMR spectroscopy), NMR chemi-

cal shifts, or simply peptide sequences. The primary
forces that govern secondary and tertiary structure
are closely related, and it is generally assumed that a
detailed characterization of the energetic genesis of
secondary structure is a key step toward under-
standing protein folding.

The accuracy of secondary structure prediction
from amino acid sequence alone has been reported
to be as high as 78% on selected datasets (Albrecht
et al., 2003). The fact that secondary structure can
be predicted from sequence with some measure of
success indicates that amino acid sequences encode
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local information about peptide conformation. On
the other hand, the widely demonstrated finding
that structure is more highly conserved than
sequence in proteins places a limit on the practical
accuracy of conformational predictions from
sequence alone. On the experimental side, NMR
chemical shifts have been considered as indicators
of secondary structure since the late 1960s
(Markley et al., 1967; Sternlicht and Wilson,
1967), and strong relationships between chemical
shifts and secondary structure have been eluci-
dated (Spera and Bax, 1991; Wishart et al., 1991;
Le and Oldfield, 1994; Luginbuhl et al., 1995;
Iwadate et al., 1999; Sibley et al., 2003). Several
algorithms have been developed for identifying
secondary structure from NMR chemical shifts
alone; these include the Dd method (Reiley et al.,
1992), the chemical shift index method (Wishart
and Sykes, 1994), the database approach by
TALOS (Cornilescu et al., 1999), and the proba-
bility-based method (Wang and Jardetzky, 2002).

Given the separate predictive potential of
sequence and chemical shifts, it is reasonable to
assume that secondary structure predictions
obtained by combining the twowould be better than
those from either alone. Hung and Samudrala
(2003) have applied a supervised machine learning
approach to combining sequence and chemical shift
data. Our approach described here has been to
develop an energetic model that presents a frame-
work for combining the interdependent informa-
tion from sequence and chemical shifts in a manner
that optimizes their joint predictive potential.

The remarkable effectiveness of statistical
potentials in specific applications, for example, in
molecular mechanics and molecular dynamics
simulations (Kuszewski et al., 1996; Moult, 1997),
provides reasonable grounds for attempting to
devise an energy-based approach for secondary
structure prediction. The standard approach is to
convert occurrence frequencies to estimates of free
energy through application of the Boltzmann
hypothesis and to assert that the logarithm of the
probability of a specific conformational state is
proportional to its energy. In other words, amino
acids populate each structural feature with a
probability that can be calculated by the familiar
Boltzmann–Gibbs weighting factor of statistical
thermodynamics.

We used a database containing �37,000 resi-
dues from 310 protein sequences in constructing

our statistical potential and in obtaining results
from secondary structure determinations. We used
a second (non-overlapping) database containing
�12,000 residues from 97 protein sequences in
determining that the model is independent of the
dataset. Equivalent unbiased criteria were used in
selecting the members of each dataset, which con-
sisted of proteins with known structure and as-
signed chemical shifts. With both datasets we show
how the combined use of amino acid sequence and
chemical shift information yields a marked increase
in accuracy over chemical shift alone in determin-
ing secondary structure. We discuss the informa-
tion content of multidimensional statistical
potentials and the basis for our choice of optimal
chemical shift dimensions.

Our energy-based method for secondary
structure prediction (PECAN, Protein Energetic
Conformational Analysis from NMR chemical
shifts) is part of a larger effort on the automated
analysis of protein NMR data. A single software
platform has been developed that uses as input the
sequence of the protein and peak lists derived
from various experimental multidimensional,
multinuclear magnetic resonance datasets and that
provides as output chemical shift assignments and
secondary structure analysis. We have named this
package ‘‘PISTACHIO’’ (Probabilistic Identifica-
tion of Spin sysTems and their Assignments
including Coil–Helix Inference as Output). It is
available for general use from a server at http://
bija.nmrfam.wisc.edu. The chemical shift assign-
ment algorithm used in PISTACHIO will be pre-
sented in a separate publication.

Methods

Overview of the mathematical model

Suppose that wn is the number of observations of
state n and En is the energy of state n. Further
assume that wn is approximately proportional to
the probability for state n. Then, for a system in
equilibrium in one of N possible states, the energy
and probability are related as:

pðEnÞ ¼
1

Z

� �
e�bEn Z ¼

XN
n¼1

e�bEn

b ¼ 1=kT ð1Þ
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where k is the Boltzmann constant, T is the tem-
perature and Z is the normalization factor called
the partition function, and p(En) probability of
state En. The constant b sets a monotonic scale for
units of energy and for our purposes can be set
equal to a convenient constant.

For our model we retain the general form of this
distribution but modify the energy term and its
algebraic interpretation. The form for the energy
term E can be very general and for our model has
two components: a term representing the statistical
(local) bias potential arising from chemical shifts,
followed by a second term describing the interac-
tion potential arising from propensities of pairwise
sequences (dipeptides) to be in specific classified
states (Equation 2). The dependence of the pairwise
potential on the local bias potential extends the
pairwise potential to an effective three-body inter-
action potential (tripeptide) that accounts for
sequence dependent effects while at the same time
keeping the problem computationally tractable.
We make no assumptions about the analytic form
of these terms; instead each energy term and its
proportional influence on the final energy is first
estimated and subsequently refined.

Ei ¼ �
Xiþl
j¼i�l

Kj; j�1ðVjÞ þ cjVj

� �
whereKj; j�1ðVjÞ

¼ Hj;jþ1 þHj�1; j
� �

Vj

ð2Þ

Equation 2 represents a finite model of length
(l+1), where the term Vi represents the bias po-
tential vector, which will be determined by con-
structing optimized residue-specific density
estimates that are related to energy through
Equation 1. Hj, j+1 is a transition matrix for each
state and represents the propensities of residues j
and j+1 to be in each of the possible state com-
binations. The values for the term Hj, j+1 are de-
rived from a database of experimental values. The
two products Hj, j+1Vj and Hj)1, jVj represent two
different stochastic mixings of the initial vector Vj.
The averaging operation is performed after trans-
formations that are described in more detail in the
Supporting Information.

The parameter cj, which we can replace with a
constant c, represents the proportional influence of
the two terms and is optimized by reference to the
database of experimental data. Details for com-

puting with the above expression are presented in
the Supporting Information.

Each site can be viewed as being in one of three
geometrically defined states: helix (H), extended
(E), or ‘‘random coil’’ (R). R is defined simply as
neither H nor E. Each site has an associated energy
that is coherent in the finite neighborhood l. When
the coherent energy associated with a given site for
one state is ‘‘low enough’’, then we say that the
given residue is in one of the indicated states.
When this energy (or equivalently its correspond-
ing probability) does not reach a threshold level,
we say that the given residue is in a ‘‘chemical-shift
coherent’’ state (CSC state). ‘‘CSC state’’ is our
designation for any site that shows distinguishing
chemical shift signatures but cannot be strictly
classified in one of the states (H, E, or R).

The ‘‘core structural regions’’ are heuristically
defined as those for which various methods of
secondary structure identification agree on the
designation. The secondary structures of these
core segments can be determined with a high
degree of accuracy. Although the remaining
regions may have no strictly definable structure, it
is important to take note of their propensities,
because their energy patterns may indicate pivotal
residues such as turns between extended strands.
In our model, the regions are given a numerical
value between 1 and )1. A value of 1 indicates H,
and a value of )1 indicates E. A value near zero
indicates a state equivalent to what is called in the
literature a random coil. Absolute values near
unity are strong indications of a structured state.
Fractional values indicate states with a transition
classification; this can be considered as comple-
mentary to the DSSPcont approach (Carter et al.,
2003), which extends the classification of second-
ary structure determined from 3D atom coordi-
nates, and has the potential for analyzing
inconsistencies between secondary structure des-
ignations obtained by use of different schemes for
secondary structure classification.

Theoretical factors influencing the model

In theory, global phenomena that obey the
Boltzmann–Gibbs distribution can be described in
terms of local potentials. Conversely, a set of local
potentials could lead to a global description given
by the Boltzmann–Gibbs distribution. The key for
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such a link is based on a theorem commonly
identified as the Hammersly–Clifford theorem
(Hammersley and Clifford, 1971, unpublished;
Spitzer, 1971; Besag, 1974). An implication of this
theorem is that the efficacy of the description given
by the Boltzmann–Gibbs distribution is intimately
tied to the accuracy of the local potential
description. To understand the behavior of our
model, its sensitivity to our estimates, and the
nature of its solutions, we use an approach that
combines elements of statistical mechanics and
statistical decision theory (Chentsov, 1982;
Janyszek and Mrugal-a, 1989; Ruppeiner, 1995).

As has been reported (Braun et al., 1994; Lukin
et al., 1997; Schwarzinger et al., 2000; Wishart and
Case, 2001; Wang and Jardetzky, 2002), mean
random coil chemical shifts can vary by more than
2 ppm, and chemical shifts are often a single value
representing a distribution (Lukin et al., 1997).
Therefore, the pursuit of accuracy beyond existing
methods calls for a detailed statistical analysis of
chemical shift data under a ‘‘minimal’’ set of
assumptions.

Databases

Our database of chemical shifts was derived from
two sets of BMRB entries with verified matched
PDB entries. The first set (derived from data
downloaded in October 2003) was used to derive
statistical potential estimates and subsequently to
test the accuracy of secondary structure identifi-
cation. The second set (from more recent entries
downloaded in June 2004) was used for the pur-
pose of testing the ability of our model to deal with
‘‘unseen’’ data. All entries were included that had
sequence lengths ‡50, at least one reported 13Ca

chemical shift, and reported experimental errors
within a reasonable window (Dd13C < 0:4 ppm;
Dd15N < 0:4 ppm;Dd1H < 0:04 ppm). To avoid
an artifactual increase in claimed accuracy, only
one chain of each homo-oligomeric protein was
included in the dataset. In total, our first database
comprised �37,000 residues from 310 different
protein chains, and the second database comprised
�12,000 residues from 98 different proteins. For
the more abundant amino acids (>3.5%), the
average frequency difference between the two
databases was �3.2%, while for the less abundant
amino acids an average frequency difference of
15% was observed. No bias in the selection of

amino acids in the two sets was detected (a detailed
table is presented in the Supporting Information).
The secondary structure designations for the set of
310 proteins were obtained by applying the DSSP
algorithm (Kabsch and Sander, 1983) to the PDB
entries corresponding to the BMRB entries. We
obtained the dipeptide frequencies for the corre-
sponding conformations from the PDBselect
database, dated March 2004 (Hobohm and
Sander, 1994), which contains 1621 structures with
specified secondary structure defined by DSSP
results.

Optimized residue-specific potentials

The relationship between probabilities and energy
allowed us to build accurate local energy models
from the corresponding densities. A good way of
approximating densities is by regularizing sample
data applying a smoothing kernel at the appro-
priate bandwidth (Silverman, 1986). To obtain a
robust estimate of densities with the ‘‘appropriate’’
bandwidth for our entire dataset, we exploited the
difference in the qualitative behavior of two dis-
tinct kernels and their bias-variance characteriza-
tion.

The hybrid nearest neighbor estimator can be
written as

f̂ðxÞ ¼ 1

ndkðxÞ
Xn
i¼1

K
x� Xi

dkðxÞ

� �
ð3Þ

KðxÞ ¼ 1=2 if jxj < 1
0 otherwise

�
:

dkðxÞ ¼ maxðh;mk ðxÞÞ

mk(x) is the largest distance between x and its k
nearest neighbors and h is a fixed value larger than
expected experimental error. The sample size is n,
and f̂ ðxÞ is the kernel estimate evaluated at x with
window width dk(x). The Ep kernel is defined as

KeðxÞ ¼
3

4
ffiffiffi
5
p 1� x2=5
� �

þ ð4Þ

The ‘‘+’’ indicates that only the positive part is
considered.

The hybrid nearest neighbor estimator (Equa-
tion 3) can lead to more bias in high-dimensional
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settings but is more sensitive to concentrated dis-
tributions, whereas the Ep kernel (Equation 4) is
smooth and provides a true density. The basic
nearest neighbor method has been used for
secondary structure prediction from protein
sequences (Salzberg and Cost, 1992; Zhang et al.,
1992; Yi and Lander, 1993; Salamov and
Solovyev, 1995; Levin, 1997; Jiang, 2003).

A comparison of the hybrid nearest neighbor
kernel estimates with the Ep kernel, at a given
bandwidth, can then be used to test the adequacy of
the number of data points and the reliability of the
estimate. Let fe (x) be the density estimate using the
Ep kernel and fe (h) be the estimate obtained using
the hybrid nearest neighbor approach. Then,

ðAðf > eÞÞ�1
Z
f>d
ð fe � fhÞedx � d d� 1

ðfe � fhÞe ¼
j fe � fhj if ð fe � fhÞ > e

0 otherwise

�

ð5Þ

requires that the integrated error between two
kernels, over a region where there is a non-negli-
gible positive probability in either kernel, be small.
The factor A is used to normalize for the area of
the region over which integration is performed.
The e-insensitive criterion is robust and more
suitable to our purposes than approaches that
optimize the mean square integrated error of a
single kernel.

Optimality of multidimensional chemical shifts

When multidimensional data are available, the
dimension of the space in which densities should be
estimated is an important consideration in deter-
mining the local potential. The optimal dimension
for this space depends on the residue type and the
conformational state and must be determined for
each residue. The Kullback–Liebler (KL) infor-
mation divergence, a measure of the distance be-
tween two distributions p and q, is defined as

Dðp; qÞ ¼
X

p log
p

q
ð6Þ

Let p=p(x1,…, x2,…, xn) and q = p(x1, x2,…,
xi-1, xi+1,…, xn) p(xi). The first term in q is ob-
tained by considering the joint density after
removing the ith variable. With the addition of
each dimension some information may be gained.

A higher statistical dependence for additional
dimensions yields more negative values for D. The
additional information content must be balanced
against changes in the accuracy of the local po-
tential estimates, as measured by the accuracy of
secondary structure identification. We then used
this measure to find the smallest subset of chemical
shift combinations, or chemical shift space (CSS)
(Labudde et al., 2003), that is the most accurate.

We note that as a routine part of kernel density
estimation, cross-validation is a highly recom-
mended practice, which we follow. The methods
described in this section were used to obtain esti-
mates for combinations of N = 1,2,3 chemical
shifts of different nuclei to obtain an optimal
predictor for each residue type for the variety of
chemical shift information available. N is the
dimensionality of the CSS. To make full use of all
data and to improve robustness with respect to all
available data, we have employed a kernel exten-
sion approach that makes use of data available in
lower dimensional CSS to obtain estimates in a
higher dimensional CSS. Figure 1a shows the
estimates for the nearest neighbor and Ep kernels
in the13Ca–1Ha CSS for alanine.

Computational procedure

Our computational realization of the above model
involved a number of steps that are detailed in the
Supporting Information. We defined the accuracy
of our secondary structure identification for each
of the states s (H, E, or R) in each protein chain by
a parameter Q0s ¼ Ns=ðTs þ FsÞ, where Ns is the
number of residues identified by our method to be
in the particular state s and confirmed by DSSP to
be in the given state, Ts is the total number of
residues in the s state from DSSP, and Fs is the
number of residues predicted in the s state by
PECAN but not confirmed by DSSP. (Table 2 s in
the Supporting Information lists the results for
different CSS choices.)

We optimized the accuracy and robustness of
our energetic model by varying the neighborhood
size of each amino acid (l ), the parameter (c), and by
retaining a running tally of mean predication
accuracy and variance across the dataset for each of
the core secondary structure regions (Riis and
Krogh, 1996). The size of the neighborhood was
minimized to be the smallest size that attained the
minimum error rate. Each amino acid was assigned
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a probability vector on the basis of a density esti-
mate designed to have the smallest error rate.

Results and discussion

In determining the accuracy of our method, we
used as ‘‘correct’’ the elements of secondary

structure derived from DSSP analysis (Kabsch and
Sander, 1983) of three-dimensional structural
models from the PDB entry identified in the
BMRB entry as corresponding to the chemical
shift values. In cases where multiple structures
(from X-ray or NMR) were available, we used the
one we considered to be best resolved. Two dif-
ferent Q3 accuracy results were computed for each
dataset. In the first Q3 calculation, one residue at
the border of two different identifiable regions
was removed from consideration prior to the
comparison against DSSP. These results are
shown in the first row of Table 1 and demonstrate
an overall Q3 accuracy of approximately 90%. In
the second Q3 calculation, predictions against
DSSP were made only for those residues not
considered in the first calculation. Use of a uni-
form decision threshold across all residues in all
proteins resulted in an accuracy for these regions
of 60%. In other words, in regions designated by
our method to be in a CSC state, our secondary
structure identification differed from the DSSP
designation for 40% of residues tested. The pat-
tern of energies indicates that our approach has
sufficient information content to distinguish be-
tween core structural regions and transition re-
gions along their boundaries. For the full set of
residues (core and CSC state), our agreement with
DSSP was 83%.

Our average of 90% accuracy with the first
dataset (310 proteins; 37,000 residues) demon-
strates the ability of the model to compute accu-
rate energetics for NMR data collected under

Figure 1. Estimated relative densities in two-dimensional
13Ca–1Ha and 13Ca–13Cb chemical shift space (2D CSS).
Alanine 13Ca–1Ha densities derived from the Epanechnikov
kernel (Ep kernel) (a left) for different conformational states
and from the locally adaptive nearest neighbor estimator (a
right) showing qualitative agreement. Estimated densities in
two-dimensional 13Ca–13Cb chemical shift space (CSS) derived
from the Ep kernel for (b) alanine and (c) methionine showing
well separated states in alanine vs. the mixed states in
methionine.

Table 1. Results from the application of our energetic model for chemical shift space and sequence (PECAN) to proteins of known

structure and with assigned chemical shiftsa

Residues considered Correctly assigned residues Q3

a-helix b-strand random coil

Dataset A

Core 94.0% 83.8% 89.6% 90.1%

All 86.1% 70.6% 85.7% 83.0%

Dataset B

Core 92.9% 83.1% 89.0% 89.7%

All 86.4% 70.6% 83.8% 82.4%

aRestriction of potential candidates to those of length >50 amino acid residues with 13Ca chemical shift data, yielded 407 proteins
(48,638 residues), which were divided (not selected) into two sets. Dataset A, which consisted of 310 proteins (36,491 residues), was
used for model construction and testing. Dataset B, which consisted of 97 proteins (12,147 residues), was not used in any part of model
construction and served primarily as a control dataset to measure robustness of our model.
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varying conditions of pH and temperature
(Table 1). The similar rate of success with the
second dataset (97 proteins; 12,000 residues) shows
the robustness of the PECAN approach in han-
dling data not previously considered. For 99% of
the proteins, our identification accuracy exceeded
75%, and for 96% of the proteins the accuracy
exceeded 80%.

Our information content criteria led to the
choice of residue-specific combinations of chemi-
cal shifts. For example, in the case of glutamine, a
weak sheet former, the optimal set of chemical
shifts for sheet prediction was provided by the 3D
1Ha–13C–15N CSS. In no case was the performance
improved by using more than three chemical shift
values for a given residue type. Thus, although
higher dimensional information has been used in
the past (Wishart and Sykes, 1994; Wang and
Jardetzky, 2002), our results show no justification
for this.

Figure 1b provides an example of how the 2D
13Ca–13Cb CSS can yield a better identification of
secondary structure for a particular amino acid
than the 2D 1Ha–13Ca CSS (Figure 1a) and sug-
gests how the two can be combined to yield better
overall secondary structure identifications. The
estimated density for alanine based on the 2D
13Ca–13Cb CSS (Figure 1b) shows a distinctly
clearer separation of densities for helix, strand,
and coil than the 2D 13Ca–1Ha CSS for the same
residue (Figure 1a). Our results indicate that,
among the 2D CSS measures, 13Ca–13Cb is the best
general secondary structure predictor for alanine
but not for methionine (Figure 1c). Depending on
the chemical shift values available, a distinct CSS
can be chosen as optimal for identifying the sec-
ondary structure of each residue. The dependence
of CSS on residue type holds for all residues, even
when all chemical shift data are available.

Figure 2 illustrates secondary structure identi-
fication results for four proteins with different
folds. The transition regions, or regions in CSC
state, are shown in yellow in the probability plots
(Figure 2a–d). Figure 2e shows the energetic esti-
mates used in determining the probabilities for the
protein shown in Figure 2d. Figure 3 illustrates
that the accuracy of secondary structure identifi-
cation increased when sequence information was
included.

The optimization curves in Figure 4a indicate
that the addition of sequence information tends to

create a bias toward more structure in the
sequence. For example, the E to R transition
propensities (Supporting Information) favor
extended strand over random coil. The H to R
transition is more balanced, but has a slight pref-
erence for H. Note that as the accuracy for the
E and H regions increases, the accuracy for R first
increases and then decreases (Figure 4a). When
the information mixture parameter, c is approxi-
mately 1, Q3 reaches its maximal value. The
accuracy of the predictions increased significantly
when one neighbor on each side was included
(Figure 4b). A smaller increase in accuracy was
observed when a second neighbor on each side was
included (Figure 4b), but the inclusion of addi-
tional neighbors did not improve the energy esti-
mate or accuracy curve (Figure 4b, inset). Thus,
our optimization procedure selected a five-residue
stretch as the optimal length for the detection of
secondary structure. This result is consistent with
the idea that secondary structure formation is
primarily a local phenomenon that extends over
one or two neighboring residues. Including trip-
eptide propensities did not alter this result. Thus,
given the current available data, it is unlikely that
the neighborhood size for the optimal detection of
secondary structure is strongly influenced by the
scale of sequence interaction data (pairwise vs.
three-long).

As a means of evaluating the performance of
PECAN relative to the current state-of-the-art, we
submitted our second database of proteins with
chemical shifts to analysis by the PSSI software
(Wang and Jardetzky, 2002). By use of the PSSI
algorithm, Wang and Jardetzky (2002) reported a
Q3 accuracy of 88% for predictions of ‘‘highly
structured’’ secondary structures for 36 proteins
with �6100 residues; they compared this to 81%
accuracy obtained by the CSI approach. In car-
rying out the analysis, we used PSSI version 2, as
available from the website (http://www.pron-
mr.com/) on August 24, 2004. As output from
PSSI, we chose the raw secondary structure iden-
tifications and the identifications achieved fol-
lowing application of PSSI heuristics. We then
used our protocol to compare the predicted results
from PSSI with those from DSSP for each struc-
ture. According to our core scoring protocol, PSSI
obtained averages of 74% correct for the raw
identifications and 82% correct following heuristic
corrections (Figure 5). With the same dataset and
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scoring protocol, PECAN achieved 90% accuracy
without heuristics, which is close to the practical
limit of achievable accuracy in classifying the
states.

Close inspection of the results indicates the
classification accuracy of PECAN could be

improved by the addition of heuristic rules. For
example, regions identified as helix or strand with
length shorter than three are less prominent in
existing databases, and the reassignment of these
regions as coil would improve the scores (Wishart
and Sykes, 1994). Such rules also could improve
the identification 3/10-helix structures (2.5% of the
total residues) as an additional post-processing
step. However, we have elected not to do this,
because our goal has been to devise a purely
energetic model that can provide insight and be
refined as the database of structures with assigned
chemical shifts grows.

Figure 2. Use of the algorithm to identify the secondary
structural elements in four proteins from chemical shifts and
the peptide sequence. The horizontal axis represents the
sequence number. The positive vertical axis represents the
probability of helix (green); and the negative vertical axis
represents the probability of extended structure (blue). Values
near zero represent random coil residues. The yellow bars
indicate identification of a region without a distinct structural
designation. The horizontal green bars (above) and blue bars
(below) indicate the designation, respectively, as helix and sheet
by DSSP. The four proteins correspond to BMRB entries (a)
4090, (b) 4391, (c) 5335, and (d) 4083. The first residue for
entries 4090 and 5335 are not shown because of missing
chemical shifts. (e) The energy pattern used for the identifica-
tion of secondary structure for BMRB entry 4083 (d). The
horizontal axis represents the sequence number, and the
negative vertical axis represents the energy level for each
residue compared to the ideal stable energy level for the
assigned secondary structure (shown as the yellow line across
the bottom of the figure). Helix energy is shown in green,
extended structure energy in blue, and red represents structural
forms not classified as helix or extended. Bars with a mixture of
two or three colors indicate regions where the chemical shift
data point toward a structure that cannot be classified strictly
into one of the three structural categories. The ideal energy
scale is normalized to a common level and was selected for the
best exposition.

b

Figure 4. Illustration of the optimization step. Q3 is optimized
against the parameter c that determines the relative strengths of
sequence vs. bias potential. Q3 is also optimized on same set for
lattice size. (a) Prediction accuracy vs. the mixture parameter c.
(b) Prediction accuracy vs. n = l+1, the lattice neighborhood
size, where 2n + 1 is the total lattice size. In the inset, the
n = 0 point (no sequence information) has been removed to
better illustrate the impact of lattice size.

Figure 3. Distribution of Q3 for dataset 1. Light red bars
represent the distribution of accuracy (1 = 100%) without the
incorporation of sequence information. Green bars represent
the distribution of accuracy after incorporating sequence
information.
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It may appear surprising that better secondary
structure determination comes from choosing
optimal sets of limited chemical shifts for each
residue type than from applying all available data.
Other approaches, for example, PSSI and TALOS
(Cornilescu et al., 1999) attempt to make simul-
taneous use of all available chemical shifts for each
residue type. However, on theoretical grounds it
may be expected that the chemical shifts from
some atom types are more responsive to side-chain
dihedral angles or tertiary structure than others.
Chemical shift information not used by PECAN to
identify secondary structure can be employed in
developing further restraints for the determination
of three-dimensional structure.

Supporting Information available: Mathematical
details, tables of intermediate results, and com-
putational information (4 tables and 7 figures) at
http://dx.doi.org/10.1007/s10858-005-5705-1.
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